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ABSTRACT 

Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores 
necessary in today's complex space systems. These expert systems typically take a set of 
symptoms as input and produce diagnostic advice as output. The primary objective of such expert 
systems is to provide accurate and comprehensive advice which can be used to help return the space 
system in question to nominal operation. 

The development and maintenance of diagnostic expert systems is time and labor intensive 
since the services of both knowledge engineer(s) and domain expert(s) are required. The use of 
adaptive learning mechanisms to incrementally evaluate and refine rules promises to reduce both 
time and labor costs associated with such systems. This paper describes the basic adaptive learning 
mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next, 
basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert 
systems. These strategies support the incremental evaluation and refinement of rules in the 
knowledge base by comparing the set of advice given by the expert system (A) with the correct 
diagnosis (C). Techniques are described for selecting those rules in the knowledge base which 
should participate in adaptive learning. 

The strategies presented may be used with a wide variety of learning algorithms. Further, 
these strategies are applicable to a large number of rule-based diagnostic expert systems. They may 
be used to provide either immediate or deferred updating of the knowledge base. 

INTRODUCTION 

The basic architecture of rule-based diagnostic expert systems is shown in Figure 1. 
Symptoms describing the failure to be diagnosed are entered into the expert system via the user 
interface. The system then "reasons" over the set of symptoms, asking for additional information 
if necessary. At the conclusion of the "reasoning" process, the expert system provides 
suggestions for correcting the anomalies of the system under diagnosis. As can be seen in 
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Figure 1. Rule-Based Diagnostic Expert System Architecture. 

Figure 1, this advice can take one or more forms. It is also possible that the system will be 
unable to provide any advice. Of course, the objective of a well-designed expert system is to 
provide both accurate and comprehensive advice. 

The basic components of a rule-based expert system are a knowledge base and an inference 
engine. The knowledge base consists of a set of facts and a set of rules. Although actual 
knowledge representations vary from application to application, the rules are logically equivalent 
to the form: 

H + K  

where set H contains one or more elements from the description space. The description space, 
determined by knowledge engineers and domain experts, contains all the propositions and 
negated propositions used to describe the environment. Set K contains a set of actions to be 
performed. These actions may modify the knowledge base and/or cause external actions to be 
performed. Without loss of generality, the remaining discussion assumes that each rule 
conclusion contains a single action such as "replace part C6." 

Clearly, expert system performance is directly related to the accuracy and 
comprehensiveness of rules in the knowledge base. One basic approach to evaluating rule 
accuracy and comprehensiveness has been to compare the system's advice with the correct 
diagnosis. Correct diagnoses come from domain experts themselves and/or from observing the 
actions required to remove anomalies from the system being repaired. Once this comparison is 
made, a form of learning is initiated in an effort to upgrade the knowledge base and thus improve 
the expert system's diagnostic accuracy. The most common approach to learning in this situation 
utilizes domain experts and knowledge engineers to manually revise the contents of the 
knowledge base. Although St. Clair et al. [ 101 have suggested a technique to assist in this 
endeavor, manual updating of rules is still time and labor intensive. 
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Attempts are currently under way to develop machine learning techniques which can be 
used to automate revision of the knowledge base. Both nonincremental and incremental 
techniques have been developed. Nonincremental learning techniques perform all learning at a 
given point in time. While the learning process may be repeated periodically, these techniques 
require that all accumulated test cases be processed at once [4,7]. Other techniques use 
incremental learning mechanisms which continuously update portions of the knowledge base 
[9,11]. They attempt to improve the accuracy of advice by refining the components of existing 
rules. Incremental learning techniques seek to improve the comprehensiveness of advice by 
creating new rules as necessary. 

The following section outlines some of the basic adaptive learning mechanisms. It is 
followed by a discussion of how expert system advice is classified. Then, strategies for adding 
adaptive learning mechanisms to rule-based diagnostic expert systems are discussed. 

BASIC ADAPTIVE LEARNING MECHANISMS 

In diagnostic expert systems, adaptive learning mechanisms utilize the input symptoms, the 
current knowledge base, and the correct diagnosis to produce an updated knowledge base. 
Approaches range from simple to highly specialized. Figure 2 illustrates the basic relationship of 
these components. The adaptive learner continuously applies various learning mechanisms to 
selected rules in the knowledge base. 

Adaptive learning strategies fall into one of six basic categories [1,3,9]: strengthening, 
weakening, unlearning, generalization, discrimination, and discovery. Strengthening and 
weakening mechanisms are used to reward correct rules and to penalize incorrect rules. They 
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may be implemented by keeping individual rule statistics about the number of times the rule has 
fired and the number of times it participated in a rule chain leading to an element of the correct 
diagnosis. These experience indicators can be used to effect future rule firings and to indicate the 
strength of the advice given in the expert system output. 

Unlearning has received little attention in the literature [5 ] .  Unlearning involves the 
removal of undesirable rules from the knowledge base. Experience indicators may be useful in 
deciding which rules to remove. 

Generalization is the process of reducing the number of propositions andor negated 
propositions in a rule's hypotheses. The overall result is to make the hypotheses less restrictive. 
The rule then becomes applicable in a larger number of situations. The need for generalization is 
easily identifiable in situations where a rule which should have fired did not fire. This condition, 
called an error of omission, usually indicates that the rule hypotheses were overly restrictive. 
Generalizing a set of rules may make it possible to combine several rules into one. Good 
generalization mechanisms are hard to define due to the difficulty of deciding which propositions 
can be removed from the rule hypotheses. Bundy et al. [3] provide some suggestions along this 
line. 

Discrimination produces results which are essentially the opposite of generalization. In 
discrimination, propositions or negated propositions are added to a rule's hypotheses to restrict 
its firing. Discrimination mechanisms are usually easier to define than generalization 
mechanisms. Some algorithms [7,9] treat discrimination and generalization as complementary 
processes. Bundy et al. [3] gives an example to show that they are not fully complementary. 

Discovery mechanisms utilize input symptoms and the current knowledge base to create 
new rules. These mechanisms are necessary whenever the expert system gives incomplete 
diagnostic advice or no advice at all. They must decide which propositions and negated 
propositions from the description space should constitute the hypotheses of each new rule. The 
list of symptoms is generally quite helpful in this regard. Discovery mechanisms may become 
quite complex in situations where extensive new rule chains must be constructed. As is indicated 
in a later section, the most difficult part of discovery learning is deciding when to apply it. 

general set of adaptive learning mechanisms. The analytical approaches include the incremental 
and nonincremental classes of techniques mentioned earlier. Many approaches attempt to 
perform logical equivalents of the basic mechanisms described. In cases where knowledge 
relationships are not complex, a set of simple heuristics may suffice for implementing the 
learning mechanisms [9]. 

Both heuristic and analytical approaches are being applied in an effort to develop a good 

CLASSIFICATION OF EXPERT SYSTEM ADVICE 

The foundation for deciding how to add adaptive learning mechanisms to rule-based 
diagnostic expert systems is based on comparing expert system advice with correct diagnoses. 
Accordingly, let A denote the advice set produced by a diagnostic expert system in response to a 
given set of input symptoms. The elements of A are the consequents produced as a result of one 
or more rule chains fired by the inference engine. As indicated earlier, assume that each rule 
chain terminates with a consequent containing a single piece of diagnostic advice such as "adjust 
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Figure 3. Comparison of Expert System Advice 
with Correct Diagnosis. 

part D5." Further, let C represent the correct diagnosis. As suggested by St. Clair et al. [lo], 
the comparison of these two sets forms the foundation for evaluating expert system output. 
Figure 3 illustrates the three cases which may arise. 

The elements of set A represent components of diagnostic expert system advice while the 
elements of set C represent components of the correct diagnosis. Hence, 4 E A n C, shown in 
Figure 3, represents a correct piece of advice which was given by the expert system. The 
associated rules have produced a correct system response. The element d, E A - C represents an 
advice component which is incorrect. The associated rules have produced an incorrect system 
response and need revision. The element d, E C - A represents a case in which a component of 
the correct diagnosis was not included as part of the expert system's advice. This occurrence 
indicates a condition where the expert system has failed to provide needed advice, Since two 
different rule chains may produce the same advice, the components of these sets may not be 
distinct. 

Note that the conditions illustrated by Figure 3 are a comparison of expert system output 
with known correct diagnosis. Such a comparison will not identify cases in which incorrect rule 
chains produce correct conclusions. In addition, some erroneous conditions, such as conflicting 
conclusions, cannot be completely uncovered by comparing the contents of sets A and C. 

STRATEGIES FOR ADDING ADAPTIVE LEARNING MECHANISMS 

Given a rule-based diagnostic expert system, a set of input symptoms, and the correct 
diagnosis for this set of symptoms, the adaptive learner must decide how and when to apply the 
various types of adaptive learning mechanisms described earlier (see Figure 2). These 
mechanisms may modify rule statistics, modify rule hypotheses, and/or create new rules. The 
choice of which strategies to apply is based on comparing expert system advice with the correct 
diagnosis as discussed above and illustrated in Figure 3. 

Rule chains terminating in di E A - C represent cases in which the expert system gave 
incorrect advice. At least one rule in each chain has committed an error of commission by firing 
when it should not have fired. The strategy for adding adaptive learning mechanisms calls for 
discrimination to be performed to restrict the firing of the rule. In one prototype system [9], the 
discrimination algorithm was implemented by simply replacing the existing rule by a rule whose 
hypotheses were chosen from the set of input symptoms and whose conclusion was 4. Such a 
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simple strategy may not work well in situations in which the rule being modified participates in 
several other rule chains. Rules participating in more than one rule chain will have experience 
indicators which vary from the experience indicators of other rules in the chain. 

Advice components di E A n C represent cases in which the expert system gave correct 
advice. Two situations need to be noted in this case. The first situation involves updating both 
experience indicators for all rules participating in the rule chain. This action does not indicate that 
each rule in the chain is correct but only that it has participated in a rule chain leading to a correct 
conclusion. The second situation calls for deciding whether or not generalization should be 
performed. For instance, if two or more di E A n C have the same conclusion, generalization 
may be desirable. The decision of whether or not to generalize is difficult, as the following three 
simple rules demonstrate. 

Rule 1: 
If part number = B10 

measured value = 101 1, 
temperature range = (70 79) 
intermittent = no 

Then 
replace part B6. 

Rule 2: 
If part number = B 10 

measured value = 10 1 1, 
Then 

replace part B6. 

Rule 3: 
If part number = B10 

temperature range = (70 79) 
Then 

replace part B6. 

All three rules will fire whenever Rule 1 fires. The question arises as to whether generalization 
should be used to replace these rules by a more general rule, and if so, what should be contained 
in the hypotheses of the new rule. This is a difficult question at best. The experience indicators 
utilized in conjunction with some of the techniques mentioned in the previous section may help 
resolve such issues. Even though Rule 1 is the least general, if its accuracy rate is high and its 
times fired statistic is close to that of the other rules, it may be the case that it should be retained 
and the remaining rules should be removed from the knowledge base. 

revision. If one or more rules committed an error of omission by failing to fire when they 
should, the knowledge base is inaccurate. On the other hand, if the knowledge base does not 
contain information pertinent to the diagnostic action di, it is incomplete. The difficulty in 
deciding which case applies is related directly to the complexity of the knowledge base and to the 
rule chains it produces. 

Those di E C - A indicate cases in which the expert system's knowledge base needs 

An error of omission occurs if the knowledge base contains one or more unexecuted rule 
chains which terminate in the appropriate diagnostic action di E C - A. These rule chains may 
not have been executed because one or more hypotheses in the rule chain were not satisfied. In 
the example rules stated above, assume that of the three rules given, Rule 1 is currently the only 
one in the knowledge base and that it did not fire because the expert system had no knowledge of 

276 



the current temperature range attribute. In addition, assume that the correct diagnostic advice was 
to "replace part B6." If the missing attribute is not important to the performance of the rule, the 
error of omission can be corrected by generalizing the rule and removing the temperature range 
attribute. Depending on the complexity of the knowledge base and the rule chains generated, 
finding the rules to generalize and performing the generalization may be a complex process. 

The knowledge base is incomplete when a rule cannot be found which is a candidate for 
generalization. In this case, the knowledge base does not contain information pertinent to the 
diagnostic action di E C - A. In this situation, a discovery learning mechanism should be 
invoked to capture the missing knowledge. Depending on the structure of the knowledge base, 
the discovery learning mechanism may be either simple or complex. One simple discovery 
algorithm uses the value of the input symptoms as the hypotheses of the new rule and the correct 
diagnostic action as the rule consequent [9]. 

The first step in improving existing rules is to identify which rules should be revised. This 
necessitates recording the trace of each rule chain producing system output along with 
corresponding rule unifications. Whenever the adaptive learner is invoked, one or both of the 
rule statistics must be updated. If the rule has participated in a rule chain leading to a component 
of set C, both of the rule's experience indicators should be incremented. If the rule has 
participated in a rule chain leading to a component of set A - C, only the times fired statistic 
should be incremented. The trace provides quick access to these statistics. 

identified. Bundy et al.[3] describe two basic techniques utilized by rule learning programs to 
identify faulty rules. Both approaches are similar in that they only identify the first faulty rule 
within a chain. 

In cases where a rule chain terminates with an element di E A - C, the faulty rules must be 

In the first approach, the actual rule chain is compared with the chain which should have 
fired. Some programs require this ideal chain as input [2] while others [6] attempt to derive it by 
analysis using problem-solving and inference techniques. The first difference between the chains 
indicates the faulty rule. The necessity of identifying the ideal rule chain makes this technique 
difficult to apply. 

The second technique for finding a faulty rule is called Contradiction Backtracking. This 
technique, developed by Shapiro [8] does not require identification of an ideal chain. Assuming 
the actual rule chain concludes with di, Shapiro's algorithm begins by examining the last 
resolution step leading to di. If the propositions which were resolved to produce di are true, 
select the branch of the tree containing these propositions as part of the rule hypothesis, else 
select the other branch. Backtracking up the resolution tree continues in this manner until a rule 
from the rule base is reached. This is the faulty rule. Both Shapiro and Bundy et al. give 
examples of Contradiction Backtracking. 

Unlearning strategies generally require an approach different from those described since 
deciding which rules to "unlearn" can not generally be determined by comparing the results of 
sets A and C. Unlearning strategies require that the experience indicators of each rule in the rule 
set be evaluated periodically. However, care must be taken not to remove a rule simply because 
of poor performance. While a rule that is correct six out of a thousand times is not contributing 
to the overall quality of the knowledge base, it may need to be modified and not merely 
discarded. In addition, rules having a small number of firings but a relatively high percentage of 
correct firings probably should be left in the knowledge base. An individual rule's high 
percentage of correct firings indicates it is participating in correct rule chains. An individual 
rule's low number of firings may indicate that the conditions it identifies are exceptional cases 
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Figure 4. Dual Expert System Architecture. 

and not merely noise in the input symptoms. If the times fired and times correct statistics are 
extremely small, the rule may have been created as the result of noisy input data. 

each time a new piece of information is available. In diagnostic applications where human expert 
intervention is desired before changes are made to the knowledge base, it may be desirable to use 
a dual expert system as illustrated in Figure 4. The inference engine first reasons against the 
symptoms by using the validated knowledge base. It then outputs diagnostic advice. Next, the 
inference engine repeats the diagnosis using the revised knowledge base to produce a second set 
of advice. This advice need not be reported to the user. Upon receipt of the correct diagnosis, 
the adaptive learner updates the revised knowledge base. Knowledge base changes are logged so 
that they may be reviewed by domain experts. This scenario guarantees that the system always 
utilizes the validated knowledge base. However, at any point in time, human experts may review 
the revised knowledge base and, if desirable, use it to replace the validated knowledge base. 

The strategies described provide a means of incrementally updating the knowledge base 

CONCLUSIONS 

Techniques presented in this paper outline basic adaptive learning mechanisms and 
strategies for incorporating them into diagnostic expert systems. Although implementations of 
these strategies and learning mechanisms vary from system to system, the basic concepts are 
applicable to a large number of diagnostic expert systems. Continued research in these areas 
promises to reduce the maintenance costs of diagnostic expert systems. 
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